LogoLogo
Log InSign UpHomepage
  • 👋Welcome
  • Account and Team Setup
    • Sign up
    • Subscription Plans
    • Profile information
    • Account information
    • Roles
    • Users
    • Tags
  • FAQ
  • UNDERSTANDING MACHINE LEARNING
    • What is Graphite Note
      • Graphite Note Insights Lifecycle
    • Introduction to Machine Learning
      • What is Machine Learning
      • Data Analitycs Maturity
    • Machine Learning concepts
      • Key Drivers
      • Confusion Matrix
      • Supervised vs Unsupervised ML
  • Demo datasets
    • Demo Datasets
      • Ads
      • Churn
      • CO2 Emission
      • Diamonds
      • eCommerce Orders
      • Housing Prices
      • Lead Scoring
      • Mall Customers
      • Marketing Mix
      • Car Sales
      • Store Item Demand
      • Upsell
    • What Dataset do I need for my use case?
      • Predict Cross Selling: Dataset
      • Predict Customer Churn: Dataset
      • Predictive Lead Scoring: Dataset
      • Predict Revenue : Dataset
      • Product Demand Forecast: Dataset
      • Predictive Ads Performance: Dataset
      • Media Mix Modeling (MMM): Dataset
      • Customer Lifetime Value Prediction : Dataset
      • RFM Customer Segmentation : Dataset
    • Dataset examples - from online sources
      • Free datasets for Machine Learning
  • Datasets
    • Introduction
    • Prepare your Data
      • Data Labeling
      • Expanding datasets
      • Merging datasets
      • CSV File creating and formatting
    • Data sources in Graphite Note
      • Import data from CSV file
        • Re-upload or append CSV
        • CSV upload troubleshooting tips
      • MySQL Connector
      • MariaDB Connector
      • PostgreSQL Connector
      • Redshift Connector
      • Big Query Connector
      • MS SQL Connector
      • Oracle Connector
  • Models
    • Introduction
    • Preprocessing Data
    • Machine Learning Models
      • Timeseries Forecast
      • Binary Classification
      • Multiclass Classification
      • Regression
      • General Segmentation
      • RFM Customer Segmentation
      • Customer Lifetime Value
      • Customer Cohort Analysis
      • ABC Pareto Analysis
      • New vs Returning Customers
    • Predict with ML Models
    • Overview and Model Health Check
    • Advanced parameters in ML Models
    • Actionable insights in ML Models
    • Improve your ML Models
  • Notebooks
    • What is Notebook?
    • My first Notebook
    • Data Visualization
  • REST API
    • API Introduction
    • Dataset API
      • Create
      • Fill
      • Complete
    • Prediction API
      • Request v1
        • Headers
        • Body
      • Request v2
        • Headers
        • Body
      • Response
      • Usage Notes
    • Model Results API
      • Request
        • Headers
        • Body
      • Response
      • Usage Notes
      • Code Examples
    • Model Info API
      • Request
        • Headers
        • Body
      • Response
      • Usage notes
      • Code Examples
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. REST API
  2. Prediction API
  3. Request v2

Body

JSON request structures for various models

The request body should be passed using the -d option in the cURL command. Replace [data] with the actual JSON-formatted content you want to send for prediction. The structure and required fields depend on the specific model’s configuration.

The v2 request body uses a simplified, flat JSON structure. Each prediction row is represented as a single object containing direct key-value pairs, where:

  • The keys are the exact column names used during model training

  • The values are the inputs you want to use for prediction


v2 Example (Binary Classification / Multiclass Classification / Regression)

{
  "data": {
    "predict_values": [
      {
        "Lead ID": "21",
        "Lead Budget": 425.5130025,
        "Lead Source": "3",
        "Demo Request": 1,
        "Past Purchases": 0,
        "Website Visits": 1,
        "Email Open Rate": 49.38937152,
        "Interaction Score": 37.72859652,
        "Sales Rep Response Time": 10.99225024
      }
    ]
  }
}

This format is especially useful when exporting data from spreadsheets, CSV files, or databases. It eliminates the need to wrap each value in an alias/selectedValue structure, making it cleaner and easier to use in automated or programmatic scenarios.

PreviousHeadersNextResponse

Last updated 1 day ago

Was this helpful?