LogoLogo
Log InSign UpHomepage
  • 👋Welcome
  • Account and Team Setup
    • Sign up
    • Subscription Plans
    • Profile information
    • Account information
    • Roles
    • Users
    • Tags
  • FAQ
  • UNDERSTANDING MACHINE LEARNING
    • What is Graphite Note
      • Graphite Note Insights Lifecycle
    • Introduction to Machine Learning
      • What is Machine Learning
      • Data Analitycs Maturity
    • Machine Learning concepts
      • Key Drivers
      • Confusion Matrix
      • Supervised vs Unsupervised ML
  • Demo datasets
    • Demo Datasets
      • Ads
      • Churn
      • CO2 Emission
      • Diamonds
      • eCommerce Orders
      • Housing Prices
      • Lead Scoring
      • Mall Customers
      • Marketing Mix
      • Car Sales
      • Store Item Demand
      • Upsell
    • What Dataset do I need for my use case?
      • Predict Cross Selling: Dataset
      • Predict Customer Churn: Dataset
      • Predictive Lead Scoring: Dataset
      • Predict Revenue : Dataset
      • Product Demand Forecast: Dataset
      • Predictive Ads Performance: Dataset
      • Media Mix Modeling (MMM): Dataset
      • Customer Lifetime Value Prediction : Dataset
      • RFM Customer Segmentation : Dataset
    • Dataset examples - from online sources
      • Free datasets for Machine Learning
  • Datasets
    • Introduction
    • Prepare your Data
      • Data Labeling
      • Expanding datasets
      • Merging datasets
      • CSV File creating and formatting
    • Data sources in Graphite Note
      • Import data from CSV file
        • Re-upload or append CSV
        • CSV upload troubleshooting tips
      • MySQL Connector
      • MariaDB Connector
      • PostgreSQL Connector
      • Redshift Connector
      • Big Query Connector
      • MS SQL Connector
      • Oracle Connector
  • Models
    • Introduction
    • Preprocessing Data
    • Machine Learning Models
      • Timeseries Forecast
      • Binary Classification
      • Multiclass Classification
      • Regression
      • General Segmentation
      • RFM Customer Segmentation
      • Customer Lifetime Value
      • Customer Cohort Analysis
      • ABC Pareto Analysis
      • New vs Returning Customers
    • Predict with ML Models
    • Overview and Model Health Check
    • Advanced parameters in ML Models
    • Actionable insights in ML Models
    • Improve your ML Models
  • Notebooks
    • What is Notebook?
    • My first Notebook
    • Data Visualization
  • REST API
    • API Introduction
    • Dataset API
      • Create
      • Fill
      • Complete
    • Prediction API
      • Request v1
        • Headers
        • Body
      • Request v2
        • Headers
        • Body
      • Response
      • Usage Notes
    • Model Results API
      • Request
        • Headers
        • Body
      • Response
      • Usage Notes
      • Code Examples
    • Model Info API
      • Request
        • Headers
        • Body
      • Response
      • Usage notes
      • Code Examples
Powered by GitBook
On this page
  • Python code example
  • PHP Code Example

Was this helpful?

Export as PDF
  1. REST API
  2. Model Info API

Code Examples

This page provides practical examples for interacting with the Model Results API using both Python and PHP. The Model info API allows you to retrieve metadata outputs from your Graphite Note model

Python code example

  1. We use the requests library to send a GET request to the /model-info endpoint.

  2. We pass the Authorization header with a valid token.

  3. Since this is a GET request, no body payload is required.

  4. We handle any HTTP exceptions using raise_for_status() and basic exception catching.

import requests

# Replace {model-code} with your specific model code
url = "https://app.graphite-note.com/api/model/fetch-model-info/{model-code}"

# Insert your Graphite Note tenant token
headers = {
    "Authorization": "Bearer YOUR-TENANT-TOKEN"
}

try:
    response = requests.get(url, headers=headers)
    response.raise_for_status()  # Raises an exception for 4XX/5XX errors

    # Parse JSON response
    data = response.json()
    print("Model Info Retrieved:")
    print(data)
except requests.exceptions.RequestException as e:
    print(f"An error occurred: {e}")

PHP Code Example

  1. We use cURL in PHP to send a GET request to the /model-info endpoint.

  2. We set the Authorization header with a bearer token.

  3. No request body is needed.

  4. We parse the JSON response if the request is successful (HTTP 200 OK). Otherwise, we handle the error.

<?php
// Replace {model-code} with your specific model code
$url = "https://app.graphite-note.com/api/model/fetch-model-info/{model-code}";

// Insert your Graphite Note tenant token
$headers = [
    "Authorization: Bearer YOUR-TENANT-TOKEN"
];

// Initialize cURL
$ch = curl_init($url);

// Configure cURL options
curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

// Execute the GET request
$response = curl_exec($ch);
$http_code = curl_getinfo($ch, CURLINFO_HTTP_CODE);

// Close the connection
curl_close($ch);

// Handle the response
if ($http_code === 200) {
    $data = json_decode($response, true);
    echo "Model Info Retrieved:\n";
    print_r($data);
} else {
    echo "Error: HTTP status code $http_code\n";
    echo $response;
}
?>
PreviousUsage notes

Last updated 8 days ago

Was this helpful?