LogoLogo
Log InSign UpHomepage
  • 👋Welcome
  • Account and Team Setup
    • Sign up
    • Subscription Plans
    • Profile information
    • Account information
    • Roles
    • Users
    • Tags
  • FAQ
  • UNDERSTANDING MACHINE LEARNING
    • What is Graphite Note
      • Graphite Note Insights Lifecycle
    • Introduction to Machine Learning
      • What is Machine Learning
      • Data Analitycs Maturity
    • Machine Learning concepts
      • Key Drivers
      • Confusion Matrix
      • Supervised vs Unsupervised ML
  • Demo datasets
    • Demo Datasets
      • Ads
      • Churn
      • CO2 Emission
      • Diamonds
      • eCommerce Orders
      • Housing Prices
      • Lead Scoring
      • Mall Customers
      • Marketing Mix
      • Car Sales
      • Store Item Demand
      • Upsell
    • What Dataset do I need for my use case?
      • Predict Cross Selling: Dataset
      • Predict Customer Churn: Dataset
      • Predictive Lead Scoring: Dataset
      • Predict Revenue : Dataset
      • Product Demand Forecast: Dataset
      • Predictive Ads Performance: Dataset
      • Media Mix Modeling (MMM): Dataset
      • Customer Lifetime Value Prediction : Dataset
      • RFM Customer Segmentation : Dataset
    • Dataset examples - from online sources
      • Free datasets for Machine Learning
  • Datasets
    • Introduction
    • Prepare your Data
      • Data Labeling
      • Expanding datasets
      • Merging datasets
      • CSV File creating and formatting
    • Data sources in Graphite Note
      • Import data from CSV file
        • Re-upload or append CSV
        • CSV upload troubleshooting tips
      • MySQL Connector
      • MariaDB Connector
      • PostgreSQL Connector
      • Redshift Connector
      • Big Query Connector
      • MS SQL Connector
      • Oracle Connector
  • Models
    • Introduction
    • Preprocessing Data
    • Machine Learning Models
      • Timeseries Forecast
      • Binary Classification
      • Multiclass Classification
      • Regression
      • General Segmentation
      • RFM Customer Segmentation
      • Customer Lifetime Value
      • Customer Cohort Analysis
      • ABC Pareto Analysis
      • New vs Returning Customers
    • Predict with ML Models
    • Overview and Model Health Check
    • Advanced parameters in ML Models
    • Actionable insights in ML Models
    • Improve your ML Models
  • Notebooks
    • What is Notebook?
    • My first Notebook
    • Data Visualization
  • REST API
    • API Introduction
    • Dataset API
      • Create
      • Fill
      • Complete
    • Prediction API
      • Quickstart
      • Request
        • Headers
        • Payload
        • Data
      • Response
        • Response Structure
      • API Limits
    • Model Results API
      • Quickstart
      • Request
        • Headers
        • Body
      • Response
      • Usage Notes
      • Code Examples
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. UNDERSTANDING MACHINE LEARNING
  2. Introduction to Machine Learning

What is Machine Learning

PreviousIntroduction to Machine LearningNextData Analitycs Maturity

Last updated 6 months ago

Was this helpful?

Machine learning is a method that uses data to teach computers to recognize patterns and key drivers, allowing them to predict future outcomes without being explicitly programmed.

No-code machine learning is a simplified approach to machine learning that allows users to build, train, and deploy machine learning models without needing to write any code. This makes advanced data analysis accessible to non-technical users, empowering business teams to harness machine learning insights without relying on data scientists or programmers.

In no-code machine learning, platforms like Graphite Note provide intuitive interfaces where users can import data, select features, and train models through guided steps. For example, machine learning, as a method, uses data to teach computers to recognize patterns and key drivers, enabling them to predict future outcomes. In a no-code environment, this process is automated, allowing users to set up predictive models by simply uploading data and selecting key variables, all through a user-friendly, visual workflow.

By removing the complexity of coding, no-code machine learning enables organizations to leverage powerful data insights faster, supporting better business decisions and allowing companies to respond more quickly to market demands.