LogoLogo
Log InSign UpHomepage
  • 👋Welcome
  • Account and Team Setup
    • Sign up
    • Subscription Plans
    • Profile information
    • Account information
    • Roles
    • Users
    • Tags
  • FAQ
  • UNDERSTANDING MACHINE LEARNING
    • What is Graphite Note
      • Graphite Note Insights Lifecycle
    • Introduction to Machine Learning
      • What is Machine Learning
      • Data Analitycs Maturity
    • Machine Learning concepts
      • Key Drivers
      • Confusion Matrix
      • Supervised vs Unsupervised ML
  • Demo datasets
    • Demo Datasets
      • Ads
      • Churn
      • CO2 Emission
      • Diamonds
      • eCommerce Orders
      • Housing Prices
      • Lead Scoring
      • Mall Customers
      • Marketing Mix
      • Car Sales
      • Store Item Demand
      • Upsell
    • What Dataset do I need for my use case?
      • Predict Cross Selling: Dataset
      • Predict Customer Churn: Dataset
      • Predictive Lead Scoring: Dataset
      • Predict Revenue : Dataset
      • Product Demand Forecast: Dataset
      • Predictive Ads Performance: Dataset
      • Media Mix Modeling (MMM): Dataset
      • Customer Lifetime Value Prediction : Dataset
      • RFM Customer Segmentation : Dataset
    • Dataset examples - from online sources
      • Free datasets for Machine Learning
  • Datasets
    • Introduction
    • Prepare your Data
      • Data Labeling
      • Expanding datasets
      • Merging datasets
      • CSV File creating and formatting
    • Data sources in Graphite Note
      • Import data from CSV file
        • Re-upload or append CSV
        • CSV upload troubleshooting tips
      • MySQL Connector
      • MariaDB Connector
      • PostgreSQL Connector
      • Redshift Connector
      • Big Query Connector
      • MS SQL Connector
      • Oracle Connector
  • Models
    • Introduction
    • Preprocessing Data
    • Machine Learning Models
      • Timeseries Forecast
      • Binary Classification
      • Multiclass Classification
      • Regression
      • General Segmentation
      • RFM Customer Segmentation
      • Customer Lifetime Value
      • Customer Cohort Analysis
      • ABC Pareto Analysis
      • New vs Returning Customers
    • Predict with ML Models
    • Overview and Model Health Check
    • Advanced parameters in ML Models
    • Actionable insights in ML Models
    • Improve your ML Models
  • Notebooks
    • What is Notebook?
    • My first Notebook
    • Data Visualization
  • REST API
    • API Introduction
    • Dataset API
      • Create
      • Fill
      • Complete
    • Prediction API
      • Quickstart
      • Request
        • Headers
        • Payload
        • Data
      • Response
        • Response Structure
      • API Limits
    • Model Results API
      • Quickstart
      • Request
        • Headers
        • Body
      • Response
      • Usage Notes
      • Code Examples
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. UNDERSTANDING MACHINE LEARNING
  2. What is Graphite Note

Graphite Note Insights Lifecycle

No-code, Automated Machine Learning for Data Analytics Teams

PreviousWhat is Graphite NoteNextIntroduction to Machine Learning

Last updated 6 months ago

Was this helpful?

Data to Insights Lifecycle

  • Dataset: Begin with a dataset containing historical data.

  • Feature Selection: Identify the most important variables (features) for the model.

  • Best Algorithm Search: Test different algorithms to find the best fit for your data.

  • Model Generation: Create a predictive model based on selected features and the best algorithm.

  • Model Tuning: Fine-tune the model’s parameters to improve accuracy.

  • Model Deployment: Deploy the final model for real-world usage.

  • Explore Key Drivers: Analyze the key factors influencing the model’s predictions.

  • Explore What-If Scenarios: Test different hypothetical situations to see their impact.

  • Predict Future Outcomes: Use the model to forecast future trends or outcomes.