LogoLogo
Log InSign UpHomepage
  • 👋Welcome
  • Account and Team Setup
    • Sign up
    • Subscription Plans
    • Profile information
    • Account information
    • Roles
    • Users
    • Tags
  • FAQ
  • UNDERSTANDING MACHINE LEARNING
    • What is Graphite Note
      • Graphite Note Insights Lifecycle
    • Introduction to Machine Learning
      • What is Machine Learning
      • Data Analitycs Maturity
    • Machine Learning concepts
      • Key Drivers
      • Confusion Matrix
      • Supervised vs Unsupervised ML
  • Demo datasets
    • Demo Datasets
      • Ads
      • Churn
      • CO2 Emission
      • Diamonds
      • eCommerce Orders
      • Housing Prices
      • Lead Scoring
      • Mall Customers
      • Marketing Mix
      • Car Sales
      • Store Item Demand
      • Upsell
    • What Dataset do I need for my use case?
      • Predict Cross Selling: Dataset
      • Predict Customer Churn: Dataset
      • Predictive Lead Scoring: Dataset
      • Predict Revenue : Dataset
      • Product Demand Forecast: Dataset
      • Predictive Ads Performance: Dataset
      • Media Mix Modeling (MMM): Dataset
      • Customer Lifetime Value Prediction : Dataset
      • RFM Customer Segmentation : Dataset
    • Dataset examples - from online sources
      • Free datasets for Machine Learning
  • Datasets
    • Introduction
    • Prepare your Data
      • Data Labeling
      • Expanding datasets
      • Merging datasets
      • CSV File creating and formatting
    • Data sources in Graphite Note
      • Import data from CSV file
        • Re-upload or append CSV
        • CSV upload troubleshooting tips
      • MySQL Connector
      • MariaDB Connector
      • PostgreSQL Connector
      • Redshift Connector
      • Big Query Connector
      • MS SQL Connector
      • Oracle Connector
  • Models
    • Introduction
    • Preprocessing Data
    • Machine Learning Models
      • Timeseries Forecast
      • Binary Classification
      • Multiclass Classification
      • Regression
      • General Segmentation
      • RFM Customer Segmentation
      • Customer Lifetime Value
      • Customer Cohort Analysis
      • ABC Pareto Analysis
      • New vs Returning Customers
    • Predict with ML Models
    • Overview and Model Health Check
    • Advanced parameters in ML Models
    • Actionable insights in ML Models
    • Improve your ML Models
  • Notebooks
    • What is Notebook?
    • My first Notebook
    • Data Visualization
  • REST API
    • API Introduction
    • Dataset API
      • Create
      • Fill
      • Complete
    • Prediction API
      • Quickstart
      • Request
        • Headers
        • Payload
        • Data
      • Response
        • Response Structure
      • API Limits
    • Model Results API
      • Quickstart
      • Request
        • Headers
        • Body
      • Response
      • Usage Notes
      • Code Examples
Powered by GitBook
On this page
  • API Rate Limiting
  • Global Rate Limit
  • Tenant-Specific Rate Limit

Was this helpful?

Export as PDF
  1. REST API
  2. Prediction API

API Limits

API Rate Limiting

Graphite enforces rate limits for API requests to ensure fair usage and prevent abuse. The system utilizes two levels of rate limiting: global and tenant-specific.

Global Rate Limit

The system monitors overall API traffic to count the number of requests made within the last minute. If this count exceeds the configured global rate limit, further API requests are denied.

Tenant-Specific Rate Limit

Additionally, the system tracks API usage on a per-tenant basis. If the count of API requests made by the current tenant within the last minute surpasses the specified rate limit, further API requests are denied.

Configuration

The rate limits are configured as followed:

{
  "tenant": 10/min,
  "global": 200/min
}

Note: Rate Limit Exceeded

When the API rate limit is reached, the system will deny further requests, and the API response should include the HTTP status code 429 (Too Many Requests). This status code indicates that the client has made too many requests within a specified time frame. It is essential for clients to handle this response code gracefully by adjusting their request frequency or implementing backoff strategies

PreviousResponse StructureNextModel Results API

Last updated 8 months ago

Was this helpful?