Request (Timeseries)
Method
API is using POST method
Supports: ✅ Time Series Forecasting (predicting numeric values over a date range)
Request URL
https://app.graphite-note.com/api/v1/prediction/model/[model-code]Replace [model-code] with your model’s code.
Find it in the model’s Settings → ID section.
Headers
Authorization:
Bearer [token](Get your token in Account Info inside the app.)Content-Type:
application/json
Body
The v1 time-series API expects a structured object at data.predict_values:
Required fields
startDate(string,YYYY-MM-DD)endDate(string,YYYY-MM-DD)sequenceID(string; use"n/a"if not applicable)
Conditional field
daysData(array) — only when the model was trained with regressors. One object per date with:date(string,YYYY-MM-DD)All regressor columns used in training (e.g.,
promotion,price,weather, …)
If the model used regressors, you must supply every regressor for every date in the requested range via
daysData.
Example A — Without regressors
Typical response
Example B — With regressors (daysData required)
daysData required)Typical response
Parameter Reference
startDate
string
Yes
Start of prediction window (YYYY-MM-DD). Must align to model frequency.
endDate
string
Yes
End of prediction window (YYYY-MM-DD). Inclusive for requested outputs.
sequenceID
string
Yes
Sequence identifier. Use "n/a" if not used by your workflow.
daysData
array
Conditional
Only for models trained with regressors. One row per date.
date
string
Conditional
Inside daysData. Date the regressor values apply to (YYYY-MM-DD).
<regressor>
any
Conditional
Inside daysData. Every regressor column used in training must be present for each date.
Response fields
date: ISO datetime string (YYYY-MM-DDT00:00:00.000) aligned to the model frequency.predicted: point forecast.predicted_lower,predicted_upper: uncertainty bounds.A trailing object with
{ "sequenceID": "…" }echoes your request identifier.
Validation Rules & Tips
Dates: Use
YYYY-MM-DD. Ensure the range matches model frequency (daily, weekly, monthly).Regressors: For regressor-trained models, provide all regressors for every date in
daysData. Missing any will prevent forward predictions.Types: Match training schema. Numeric vs categorical must align with what the model expects.
Range size: Extremely large ranges may be throttled. Test with a small window first.
Echoed sequence: The API echoes your
sequenceIDat the end of the response array to help correlate requests.
Last updated
Was this helpful?

